Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The retinoblastoma tumour suppressor protein (pRb) classically functions to regulate early cell cycle progression where it acts to enforce a number of checkpoints in response to cellular stress and DNA damage. Methylation at lysine (K) 810, which occurs within a critical CDK phosphorylation site and antagonises a CDK-dependent phosphorylation event at the neighbouring S807 residue, acts to hold pRb in the hypo-phosphorylated growth-suppressing state. This is mediated in part by the recruitment of the reader protein 53BP1 to di-methylated K810, which allows pRb activity to be effectively integrated with the DNA damage response. Here, we report the surprising observation that an additional methylation-dependent interaction occurs at K810, but rather than the di-methyl mark, it is selective for the mono-methyl K810 mark. Binding of the mono-methyl PHF20L1 reader to methylated pRb occurs on E2F target genes, where it acts to mediate an additional level of control by recruiting the MOF acetyltransferase complex to E2F target genes. Significantly, we find that the interplay between PHF20L1 and mono-methyl pRb is important for maintaining the integrity of a pRb-dependent G1-S-phase checkpoint. Our results highlight the distinct roles that methyl-lysine readers have in regulating the biological activity of pRb.

Original publication

DOI

10.1038/cdd.2017.135

Type

Journal article

Journal

Cell Death Differ

Publication Date

12/2017

Volume

24

Pages

2139 - 2149

Keywords

Cell Cycle, Cell Line, Tumor, Chromosomal Proteins, Non-Histone, Genes, Tumor Suppressor, Histone Acetyltransferases, Humans, Lysine, MCF-7 Cells, Methylation, Retinoblastoma Protein, Transfection, Tumor Suppressor p53-Binding Protein 1