Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Pantothenate synthetase (EC 6.3.2.1) is the last enzyme of the pathway of pantothenate (vitamin B(5)) synthesis. It catalyzes the condensation of pantoate with beta-alanine in an ATP-dependent reaction. RESULTS: We describe the overexpression, purification, and crystal structure of recombinant pantothenate synthetase from E. coli. The structure was solved by a selenomethionine multiwavelength anomalous dispersion experiment and refined against native data to a final R(cryst) of 22.6% (R(free) = 24.9%) at 1.7 A resolution. The enzyme is dimeric, with two well-defined domains per protomer: the N-terminal domain, a Rossmann fold, contains the active site cavity, with the C-terminal domain forming a hinged lid. CONCLUSIONS: The N-terminal domain is structurally very similar to class I aminoacyl-tRNA synthetases and is thus a member of the cytidylyltransferase superfamily. This relationship has been used to suggest the location of the ATP and pantoate binding sites and the nature of hinge bending that leads to the ternary enzyme-pantoate-ATP complex.

Original publication

DOI

10.1016/s0969-2126(01)00604-9

Type

Journal article

Journal

Structure

Publication Date

09/05/2001

Volume

9

Pages

439 - 450

Keywords

Adenosine Triphosphate, Crystallography, X-Ray, Dimerization, Escherichia coli, Gene Expression, Peptide Synthases, Protein Structure, Secondary, Solutions, Substrate Specificity