Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Uncovering the role of global protein dynamics in enzyme turnover is needed to fully understand enzyme catalysis. Recently, we have demonstrated that the heat capacity of catalysis, ΔC P ‡, can reveal links between the protein free energy landscape, global protein dynamics, and enzyme turnover, suggesting that subtle changes in molecular interactions at the active site can affect long-range protein dynamics and link to enzyme temperature activity. Here, we use a model promiscuous enzyme (glucose dehydrogenase from Sulfolobus solfataricus) to chemically map how individual substrate interactions affect the temperature dependence of enzyme activity and the network of motions throughout the protein. Utilizing a combination of kinetics, red edge excitation shift (REES) spectroscopy, and computational simulation, we explore the complex relationship between enzyme-substrate interactions and the global dynamics of the protein. We find that changes in ΔC P ‡ and protein dynamics can be mapped to specific substrate-enzyme interactions. Our study reveals how subtle changes in substrate binding affect global changes in motion and flexibility extending throughout the protein.

Original publication

DOI

10.1021/acscatal.1c04679

Type

Journal article

Journal

ACS Catal

Publication Date

17/12/2021

Volume

11

Pages

14854 - 14863