Low pH modulation of recombinant vanilloid receptors and perivascular capsaicin-sensitive sensory neurotransmission.
Ralevic V., Kendall DA., Jerman JC., Davis JB., Middlemiss DN., Smart D.
The effect of low pH on capsaicin-sensitive sensory neurotransmission in the rat isolated mesenteric arterial bed and at recombinant (rVR1) vanilloid receptors was investigated. Mesenteric sensory neurogenic vasorelaxation elicited by electrical field stimulation was reversibly inhibited by lowering pH from 7.4 to 6.9 and 6.3. Capsaicin-induced vasorelaxation was not different at pH 6.9, but was attenuated at pH 6.3. Vasorelaxation to calcitonin gene-related peptide, the principal sensory motor neurotransmitter in rat mesenteric arteries, was not different at pH 6.9 or pH 6.3. In rVR1-transfected HEK293 cells, acidic conditions enhanced the affinities of capsaicin and capsazepine at rVR1, but did not affect the potency of carbachol at endogenous muscarinic receptors. Following inactivation of endogenous acid-sensitive ion channels, lowering pH (6.0-4.5) directly increased [Ca2+]i in rVR1-HEK293 cells (EC50 5.5). This response was abolished by 1 microM capsazepine. In conclusion, a decrease in pH (to 6.9 and 6.3) enhances the affinity of capsaicin at rVR1, but inhibits sensory neurotransmission in the rat mesenteric arterial bed. This likely explains why there is no evidence of an enhancement of sensitivity to capsaicin at endogenous vanilloid receptors, as observed with rVR1. When pH is reduced still further (6.0-5.5) there is direct activation of rVR1.