Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Although protein crystallization is generally considered more art than science and remains significantly trial-and-error, large-scale data sets hold the promise of providing general learning. Observations are presented here from retrospective analyses of the strategies actively deployed for the extensive crystallization experiments at the Oxford site of the Structural Genomics Consortium (SGC), where comprehensive annotations by SGC scientists were recorded on a customized database infrastructure. The results point to the importance of using redundancy in crystallizing conditions, specifically by varying the mixing ratios of protein sample and precipitant, as well as incubation temperatures. No meaningful difference in performance could be identified between the four most widely used sparse-matrix screens, judged by the yield of crystals leading to deposited structures; this suggests that in general any comparison of screens will be meaningless without extensive cross-testing. Where protein sample is limiting, exploring more conditions has a higher likelihood of being informative by yielding hits than does redundancy of either mixing ratio or temperature. Finally, on the logistical question of how long experiments should be stored, 98% of all crystals that led to deposited structures appeared within 30 days. Overall, these analyses serve as practical guidelines for the design of initial screening experiments for new crystallization targets.

Original publication

DOI

10.1107/S2059798315024687

Type

Journal article

Journal

Acta Crystallogr D Struct Biol

Publication Date

02/2016

Volume

72

Pages

224 - 235

Keywords

crystallization screening strategy, data mining, large-scale data sets, redundancy of conditions, sparse-matrix screens, Crystallization, Crystallography, X-Ray, Humans, Proteins