Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The initial step in the biosynthesis of the clinically important beta-lactamase inhibitor clavulanic acid involves condensation of two primary metabolites, D-glyceraldehyde 3-phosphate and L-arginine, to give N2-(2-carboxyethyl)arginine, a beta-amino acid. This unusual N-C bond forming reaction is catalyzed by the thiamin diphosphate (ThP2)-dependent enzyme N2-(2-carboxyethyl)arginine synthase. Here we report the crystal structure of N2-(2-carboxyethyl)arginine synthase, complexed with ThP2 and Mg2+, to 2.35-A resolution. The structure was solved in two space groups, P2(1)2(1)2(1) and P2(1)2(1)2. In both, the enzyme is observed in a tetrameric form, composed of a dimer of two more tightly associated dimers, consistent with both mass spectrometric and gel filtration chromatography studies. Both ThP2 and Mg2+ cofactors are present at the active site, with ThP2 in a "V" conformation as in related enzymes. A sulfate anion is observed in the active site of the enzyme in a location proposed as a binding site for the phosphate group of the d-glyceraldehyde 3-phosphate substrate. The mechanistic implications of the active site arrangement are discussed, including the potential role of the aminopyrimidine ring of the ThP2. The structure will form a basis for future mechanistic and structural studies, as well as engineering aimed at production of alternative beta-amino acids.

Original publication




Journal article


J Biol Chem

Publication Date





5685 - 5692


Amino Acids, Argininosuccinate Lyase, Argininosuccinate Synthase, Binding Sites, Chromatography, Gel, Clavulanic Acid, Crystallography, X-Ray, Dimerization, Magnesium, Mass Spectrometry, Models, Chemical, Models, Molecular, Multienzyme Complexes, Streptomyces