Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

KCTD family proteins typically assemble into cullin-RING E3 ligases. KCTD1 is an atypical member that functions instead as a transcriptional repressor. Mutations in KCTD1 cause developmental abnormalities and kidney fibrosis in scalp-ear-nipple syndrome. Here, we present unexpected mechanistic insights from the structure of human KCTD1. Disease-causing mutation P20S maps to an unrecognized extension of the BTB domain that contributes to both its pentameric structure and TFAP2A binding. The C-terminal domain (CTD) shares its fold and pentameric assembly with the GTP cyclohydrolase I feedback regulatory protein (GFRP) despite lacking discernible sequence similarity. Most surprisingly, the KCTD1 CTD establishes a central channel occupied by alternating sodium and iodide ions that restrict TFAP2A dissociation. The elucidation of the structure redefines the KCTD1 BTB domain fold and identifies an unexpected ion-binding site for future study of KCTD1's function in the ectoderm, neural crest, and kidney.

Original publication

DOI

10.1016/j.str.2024.07.023

Type

Journal article

Journal

Structure

Publication Date

20/08/2024

Keywords

BTB domain, KCTD, TFAP2, X-ray crystallography, cullin-RING ligase, cullin3, iodide, ion channel, pentamer, scalp-ear-nipple syndrome