Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: The rational development of new therapeutics requires a thorough understanding of how aberrant signalling affects cellular homeostasis and causes human disease. Chemical probes are tool compounds with well-defined mechanism-of-action enabling modulation of, for example, domain-specific protein properties in a temporal manner, thereby complementing other target validation methods such as genetic gain- and loss-of-function approaches. AREAS COVERED: In this review, the authors summarize recent advances in chemical probe development for emerging target classes such as solute carriers and ubiquitin-related targets and highlight open resources to inform and facilitate chemical probe discovery as well as tool compound selection for target validation and phenotypic screening. EXPERT OPINION: Chemical probes are powerful tools for drug discovery that have led to fundamental insights into biological processes and have paved the way for the development of first-in-class drugs. Open resources can inform on various aspects of chemical probe development and provide access to data and recommendations on use of chemical probes to catalyse collaborative science and help accelerate drug target identification and validation.

Original publication

DOI

10.1080/17460441.2023.2199979

Type

Journal article

Journal

Expert Opin Drug Discov

Publication Date

05/2023

Volume

18

Pages

505 - 513

Keywords

Chemical probes, drug discovery, open science, solute carriers, targeted protein degradation, ubiquitination, Drug Discovery, Chemistry, Pharmaceutical