Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Current fragment-based drug design relies on the efficient exploration of chemical space by using structurally diverse libraries of small fragments. However, structurally dissimilar compounds can exploit the same interactions and thus be functionally similar. Using three-dimensional structures of many fragments bound to multiple targets, we examined if a better strategy for selecting fragments for screening libraries exists. We show that structurally diverse fragments can be described as functionally redundant, often making the same interactions. Ranking fragments by the number of novel interactions they made, we show that functionally diverse selections of fragments substantially increase the amount of information recovered for unseen targets compared to the amounts recovered by other methods of selection. Using these results, we design small functionally efficient libraries that can give significantly more information about new protein targets than similarly sized structurally diverse libraries. By covering more functional space, we can generate more diverse sets of drug leads.

Original publication

DOI

10.1021/acs.jmedchem.2c01004

Type

Journal article

Journal

J Med Chem

Publication Date

25/08/2022

Volume

65

Pages

11404 - 11413

Keywords

Drug Design, Protein Binding, Proteins, Small Molecule Libraries