Search results
Found 2366 matches for
A multi-disciplinary Institute within the University of Oxford which focuses upon translational activities to catalyse the discovery of new medicines.
Structural Premise of Selective Deubiquitinase USP30 Inhibition by Small-Molecule Benzosulfonamides.
Dampening functional levels of the mitochondrial deubiquitylating enzyme Ubiquitin-specific protease 30 (USP30) has been suggested as an effective therapeutic strategy against neurodegenerative disorders such as Parkinson's Disease. USP30 inhibition may counteract the deleterious effects of impaired turnover of damaged mitochondria, which is inherent to both familial and sporadic forms of the disease. Small-molecule inhibitors targeting USP30 are currently in development, but little is known about their precise nature of binding to the protein. We have integrated biochemical and structural approaches to gain novel mechanistic insights into USP30 inhibition by a small-molecule benzosulfonamide-containing compound, USP30inh. Activity-based protein profiling mass spectrometry confirmed target engagement, high selectivity, and potency of USP30inh for USP30 against 49 other deubiquitylating enzymes in a neuroblastoma cell line. In vitro characterization of USP30inh enzyme kinetics inferred slow and tight binding behavior, which is comparable with features of covalent modification of USP30. Finally, we blended hydrogen-deuterium exchange mass spectrometry and computational docking to elucidate the molecular architecture and geometry of USP30 complex formation with USP30inh, identifying structural rearrangements at the cleft of the USP30 thumb and palm subdomains. These studies suggest that USP30inh binds to this thumb-palm cleft, which guides the ubiquitin C terminus into the active site, thereby preventing ubiquitin binding and isopeptide bond cleavage, and confirming its importance in the inhibitory process. Our data will pave the way for the design and development of next-generation inhibitors targeting USP30 and associated deubiquitinylases.
USP30 sets a trigger threshold for PINK1-PARKIN amplification of mitochondrial ubiquitylation.
The mitochondrial deubiquitylase USP30 negatively regulates the selective autophagy of damaged mitochondria. We present the characterisation of an N-cyano pyrrolidine compound, FT3967385, with high selectivity for USP30. We demonstrate that ubiquitylation of TOM20, a component of the outer mitochondrial membrane import machinery, represents a robust biomarker for both USP30 loss and inhibition. A proteomics analysis, on a SHSY5Y neuroblastoma cell line model, directly compares the effects of genetic loss of USP30 with chemical inhibition. We have thereby identified a subset of ubiquitylation events consequent to mitochondrial depolarisation that are USP30 sensitive. Within responsive elements of the ubiquitylome, several components of the outer mitochondrial membrane transport (TOM) complex are prominent. Thus, our data support a model whereby USP30 can regulate the availability of ubiquitin at the specific site of mitochondrial PINK1 accumulation following membrane depolarisation. USP30 deubiquitylation of TOM complex components dampens the trigger for the Parkin-dependent amplification of mitochondrial ubiquitylation leading to mitophagy. Accordingly, PINK1 generation of phospho-Ser65 ubiquitin proceeds more rapidly in cells either lacking USP30 or subject to USP30 inhibition.
Pre- and postoperative headache in patients with meningioma.
BACKGROUND: Meningiomas are generally slowly growing intracranial tumors. They are often incidentally diagnosed, given that symptoms may be absent even in cases of an enormous tumor size. Headache is a frequent but not consistent symptom. Therefore, we examined the association between structural, biochemical and histochemical tumor parameters with preoperative as well as postoperative occurrence of headache. METHODS: In our study, we prospectively investigated 69 consecutive patients enrolled for meningioma neurosurgery. Anatomical, histological and biochemical parameters were acquired, and headache parameters were registered from the clinical report and from a questionnaire filled by the patients before neurosurgery. The headache was re-evaluated one year after neurosurgery. The study was designed to exploratively investigate whether there is an association of acquired clinical and biological parameters with the occurrence of preoperative and postoperative headache. RESULTS: Edema diameter and the proliferation marker MIB-1 were negatively associated with the incidence and intensity of preoperative headache, while the content of prostaglandin E2 in the tumor tissue was positively associated with preoperative headache intensity. Headache was more prevalent when the meningioma was located in the area supplied by the ophthalmic trigeminal branch. Compared to preoperative headache levels, an overall reduction was observed one year postoperative, and patients with a larger tumor had a higher headache remission. In parietal and occipital meningiomas and in those with a larger edema, the percentage of the headache remission rate was higher compared to other locations or smaller edema. Multivariable analyses showed an involvement of substance P and prostaglandin E2 in preoperative headache. CONCLUSIONS: The study demonstrates new associations between meningiomas and headache. The postoperative headache outcome in the presented patient sample is encouraging for the performed neurosurgical intervention. These results should be tested in a prospective study that incorporates all patients with meningiomas.
Impaired Nociception in the Diabetic Ins2+/Akita Mouse.
The mechanisms responsible for painful and insensate diabetic neuropathy are not completely understood. Here, we have investigated sensory neuropathy in the Ins2+/Akita mouse, a hereditary model of diabetes. Akita mice become diabetic soon after weaning, and we show that this is accompanied by an impaired mechanical and thermal nociception and a significant loss of intraepidermal nerve fibers. Electrophysiological investigations of skin-nerve preparations identified a reduced rate of action potential discharge in Ins2+/Akita mechanonociceptors compared with wild-type littermates, whereas the function of low-threshold A-fibers was essentially intact. Studies of isolated sensory neurons demonstrated a markedly reduced heat responsiveness in Ins2+/Akita dorsal root ganglion (DRG) neurons, but a mostly unchanged function of cold-sensitive neurons. Restoration of normal glucose control by islet transplantation produced a rapid recovery of nociception, which occurred before normoglycemia had been achieved. Islet transplantation also restored Ins2+/Akita intraepidermal nerve fiber density to the same level as wild-type mice, indicating that restored insulin production can reverse both sensory and anatomical abnormalities of diabetic neuropathy in mice. The reduced rate of action potential discharge in nociceptive fibers and the impaired heat responsiveness of Ins2+/Akita DRG neurons suggest that ionic sensory transduction and transmission mechanisms are modified by diabetes.
Complex reinnervation pattern after unilateral renal denervation in rats.
Renal denervation (DNX) is a treatment for resistant arterial hypertension. Efferent sympathetic nerves regrow, but reinnervation by renal afferent nerves has only recently been shown in the renal pelvis of rats after unilateral DNX. We examined intrarenal perivascular afferent and sympathetic efferent nerves after unilateral surgical DNX. Tyrosine hydroxylase (TH), CGRP, and smooth muscle actin were identified in kidney sections from 12 Sprague-Dawley rats, to distinguish afferents, efferents, and vasculature. DNX kidneys and nondenervated kidneys were examined 1, 4, and 12 wk after DNX. Tissue levels of CGRP and norepinephrine (NE) were measured with ELISA and mass spectrometry, respectively. DNX decreased TH and CGRP labeling by 90% and 95%, respectively (P < 0.05) within 1 wk. After 12 wk TH and CGRP labeling returned to baseline with a shift toward afferent innervation (P < 0.05). Nondenervated kidneys showed a doubling of both labels within 12 wk (P < 0.05). CGRP content decreased by 72% [3.2 ± 0.3 vs. 0.9 ± 0.2 ng/gkidney; P < 0.05] and NA by 78% [1.1 ± 0.1 vs. 0.2 ± 0.1 pmol/mgkidney; P < 0.05] 1 wk after DNX. After 12 wk, CGRP, but not NE, content in DNX kidneys was fully recovered, with no changes in the nondenervated kidneys. The use of phenol in the DNX procedure did not influence this result. We found morphological reinnervation and transmitter recovery of afferents within 12 wk after DNX. Despite morphological evidence of sympathetic regrowth, NE content did not fully recover. These results suggest a long-term net surplus of afferent influence on the DNX kidney may be contributing to the blood pressure lowering effect of DNX.
Structural Dynamics of the Ubiquitin Specific Protease USP30 in Complex with a Cyanopyrrolidine-Containing Covalent Inhibitor.
Inhibition of the mitochondrial deubiquitinating (DUB) enzyme USP30 is neuroprotective and presents therapeutic opportunities for the treatment of idiopathic Parkinson's disease and mitophagy-related disorders. We integrated structural and quantitative proteomics with biochemical assays to decipher the mode of action of covalent USP30 inhibition by a small-molecule containing a cyanopyrrolidine reactive group, USP30-I-1. The inhibitor demonstrated high potency and selectivity for endogenous USP30 in neuroblastoma cells. Enzyme kinetics and hydrogen-deuterium eXchange mass spectrometry indicated that the inhibitor binds tightly to regions surrounding the USP30 catalytic cysteine and positions itself to form a binding pocket along the thumb and palm domains of the protein, thereby interfering its interaction with ubiquitin substrates. A comparison to a noncovalent USP30 inhibitor containing a benzosulfonamide scaffold revealed a slightly different binding mode closer to the active site Cys77, which may provide the molecular basis for improved selectivity toward USP30 against other members of the DUB enzyme family. Our results highlight advantages in developing covalent inhibitors, such as USP30-I-1, for targeting USP30 as treatment of disorders with impaired mitophagy.
PPARγ ligands activate the ion channel TRPA1.
The endogenous peroxisome proliferator-activated receptors (PPARγ) agonist 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2) stimulates sensory neurons by activating transient receptor potential A1 (TRPA1). Synthetic thiazolidinedione PPARγ agonists have been used as antidiabetic agents but have also been explored as experimental analgesics. Here, we have used intracellular Ca2+-measurements and voltage-clamp recordings to examine the effects of several PPARγ ligands on TRPA1 in sensory neurons and cell lines and examined nociception produced by local intraplantar administration of troglitazone. Troglitazone, rosiglitazone, nTZDpa, and the PPARγ antagonist GW9662 evoked concentration-dependent Ca2+-influx responses in TRPA1 expressing, but not untransfected Chinese hamster ovary (CHO)cells. Furthermore, troglitazone, nTZDpa, and GW9662 evoked [Ca2+]i-responses in mouse DRG neurons expressing TRPA1. Responses were abolished by the TRPA1 antagonist A967079 and were absent in DRG neurons from Trpa1-/- mice. The TRPA1 agonist activity of troglitazone, nTZDpa and GW9662 were unaffected by incubation with an excess of cysteine-methyl ester, indicating that these ligands do not act by covalent modification of cysteine residues, but rather through a non-covalent interaction with TRPA1. The cysteine reducing agent DTT did not reverse the effects of Troglitazone, nTZDpa and GW9662, which suggests that the observed agonist effects were independent of cysteine oxidation. Intraplantar injections of troglitazone evoked pain-responses in wild-type mice, but not in Trpa1-/- mice. Our molecular docking studies indicate that nTZDpa and troglitazone bind to overlapping sites in a hydrophobic pocket in the pre-S1 helix These observations demonstrate that multiple PPARγ ligands stimulate TRPA1 and that nTZDpa may be a useful tool for investigations of TRPA1.
A BRET biosensor for measuring uncompetitive engagement of PRMT5 complexes in cells.
Protein arginine methyl transferase 5 (PRMT5) plays a global role in cell physiology and is an established therapeutic target in cancer. In approximately 10-15% of human cancers, deletion of the methylthioadenosine phosphorylase (MTAP) gene results in accumulation of methylthioadenosine (MTA), exposing a synthetic lethality and opportunity for precision medicine by selective targeting of PRMT5 in this context. Reported small molecule PRMT5 inhibitors engage either cosubstrate S-adenosyl methionine (SAM) or peptide-substrate pockets through diverse mechanisms. A subset of chemotypes demonstrate uncompetitive engagement with SAM or its inhibitory metabolic precursor, MTA. Although uncompetitive engagement can be evaluated in cell-free systems, no methods exist to directly assess this in cells. Here, we describe the development of a fluorescent probe that acts as a dynamic BRET biosensor of the intracellular SAM/MTA pool that overcomes the current limitations of competitive binding analyses. Using this biosensor, we evaluate a range of diverse PRMT5 inhibitors to mechanistically characterize and quantify uncompetitive target engagement as well as ternary complex formation at PRMT5-SAM and PRMT5-MTA complexes in live cells, enabling direct insights into drug mechanism-of-action and metabolite-dependent responses of inhibitors.
Covalent Inhibitors of KEAP1 with Exquisite Selectivity.
The NRF2-KEAP1 interaction is central for cytoprotection against stresses, giving it high clinical significance. Covalent modification of KEAP1 is an efficient approach, but the covalent inhibitors used in the clinic carry undesired side effects originating in their moderate selectivity. Starting with a phenotypic screen, we identified a new covalent inhibitor chemotype that was optimized to deliver a series of potent and highly selective KEAP1 binders. While the developed compounds showed both cellular and in vivo activity, upregulating antioxidant response element-dependent target genes, they showed no genotoxicity in vitro. The lead compound exhibited broad selectivity in activity-based protein profiling and showed no significant interaction with a panel of commonly studied receptors nor with a broad panel of kinases. The nature of its interaction with KEAP1 and the origin of its selectivity were revealed by X-ray crystallography.
Phenomics-Based Discovery of Novel Orthosteric Choline Kinase Inhibitors.
Choline kinase alpha (CHKA) is a central mediator of cell metabolism linked to cancer and immune regulation. Cellular and clinical evaluation of CHKA has been hampered by challenges in the development of drug-like choline kinase inhibitors. Here, we identify CHKA as an unexpected off-target of histone methyltransferase inhibitors using an integrated phenomic approach. We confirm CHKA as a direct protein target of the aminoquinazolines UNC0638 and UNC0737 using a combination of chemoproteomic, biochemical, cellular, and metabolic profiling assays, possibly explaining the previously reported discrepancies observed for different G9a/GLP inhibitor scaffolds in cellular assays. Using primary human cell model systems, we discover that CHKA modulation impairs IgG secretion and B-cell maturation consistent with the notion that choline metabolism plays an important role in immune signalling. Co-crystal structures of UNC0638 and UNC0737 with CHKA unravel an unexpected binding mode and suggest the inhibitors as attractive starting points for the development of selective chemical tools to further explore the biological role of CHKA in cancer and immune metabolism.
Covalent fragment-based ligand screening approaches for identification of novel ubiquitin proteasome system modulators.
Ubiquitination is a key regulatory mechanism vital for maintenance of cellular homeostasis. Protein degradation is induced by E3 ligases via attachment of ubiquitin chains to substrates. Pharmacological exploitation of this phenomenon via targeted protein degradation (TPD) can be achieved with molecular glues or bifunctional molecules facilitating the formation of ternary complexes between an E3 ligase and a given protein of interest (POI), resulting in ubiquitination of the substrate and subsequent proteolysis by the proteasome. Recently, the development of novel covalent fragment screening approaches has enabled the identification of first-in-class ligands for E3 ligases and deubiquitinases revealing so far unexplored binding sites which highlights the potential of these methods to uncover and expand druggable space for new target classes.
Global Assessment of Drug Target Engagement and Selectivity of Covalent Cysteine-Reactive Inhibitors Using Alkyne-Functionalized Probes.
Covalent inhibitors are emerging as a promising therapeutic means for efficient and sustained targeting of key disease-driving proteins. As for classic non-covalent inhibitors, understanding target engagement and selectivity is essential for determining optimal dosing and limiting potential on- or off-target toxicity. Here, we present a complementary activity-based protein profiling (ABPP) strategy for unbiased proteome-wide profiling of cysteine-reactive inhibitors based on two orthogonal approaches. We illustrate the use of clickable alkyne probes for in-gel fluorescence and mass spectrometry studies using a series of therapeutic XPO1 inhibitors as an example.
Single-cell transcriptomics defines an improved, validated monoculture protocol for differentiation of human iPSC to microglia.
There is increasing genetic evidence for the role of microglia in neurodegenerative diseases, including Alzheimer's, Parkinson's, and motor neuron disease. Therefore, there is a need to generate authentic in vitro models to study human microglial physiology. Various methods have been developed using human induced Pluripotent Stem Cells (iPSC) to generate microglia, however, systematic approaches to identify which media components are actually essential for functional microglia are mostly lacking. Here, we systematically assess medium components, coatings, and growth factors required for iPSC differentiation to microglia. Using single-cell RNA sequencing, qPCR, and functional assays, with validation across two labs, we have identified several medium components from previous protocols that are redundant and do not contribute to microglial identity. We provide an optimised, defined medium which produces both transcriptionally and functionally relevant microglia for modelling microglial physiology in neuroinflammation and for drug discovery.
