Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Catabolism of galactose by Streptococcus pneumoniae alters the microbe's metabolism from homolactic to mixed acid fermentation, and this shift is linked to the microbe's virulence. However, the genetic basis of this switch is unknown. Pyruvate formate lyase (PFL) is a crucial enzyme for mixed acid fermentation. Functional PFL requires the activities of two enzymes: pyruvate formate lyase activating enzyme (coded by pflA) and pyruvate formate lyase (coded by pflB). To understand the genetic basis of mixed acid fermentation, transcriptional regulation of pflA and pflB was studied. By microarray analysis of ΔpflB, differential regulation of several transcriptional regulators were identified, and CcpA, and GlnR's role in active PFL synthesis was studied in detail as these regulators directly interact with the putative promoters of both pflA and pflB, their mutation attenuated pneumococcal growth, and their expression was induced on host-derived sugars, indicating that these regulators have a role in sugar metabolism, and multiple regulators are involved in active PFL synthesis. We also found that the influence of each regulator on pflA and pflB expression was distinct in terms of activation and repression, and environmental condition. These results show that active PFL synthesis is finely tuned, and feed-back inhibition and activation are involved.

Original publication

DOI

10.1038/srep43587

Type

Journal article

Journal

Sci Rep

Publication Date

27/02/2017

Volume

7

Keywords

Acetyltransferases, Bacterial Proteins, Base Sequence, Energy Metabolism, Galactose, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Models, Biological, Mutation, Pneumococcal Infections, Promoter Regions, Genetic, Protein Binding, Streptococcus pneumoniae, Transcriptome, Virulence