Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Various kinases, including a cyclin-dependent kinase (CDK) family member, regulate the growth and functions of primary cilia, which perform essential roles in signaling and development. Neurological disorders linked to CDK-Like (CDKL) proteins suggest that these underexplored kinases may have similar functions. Here, we present the crystal structures of human CDKL1, CDKL2, CDKL3, and CDKL5, revealing their evolutionary divergence from CDK and mitogen-activated protein kinases (MAPKs), including an unusual ?J helix important for CDKL2 and CDKL3 activity. C. elegans CDKL-1, most closely related to CDKL1-4 and localized to neuronal cilia transition zones, modulates cilium length; this depends on its kinase activity and ?J helix-containing C terminus. Human CDKL5, linked to Rett syndrome, also localizes to cilia, and it impairs ciliogenesis when overexpressed. CDKL5 patient mutations modeled in CDKL-1 cause localization and/or cilium length defects. Together, our studies establish a disease model system suggesting cilium length defects as a pathomechanism for neurological disorders, including epilepsy.

Original publication

DOI

10.1016/j.celrep.2017.12.083

Type

Journal article

Journal

Cell Rep

Publication Date

23/01/2018

Volume

22

Pages

885 - 894

Keywords

CDKL, Cyclin-Dependent Kinase-Like, cilium length, kinase, neurological disorder, protein structure, Caenorhabditis elegans Proteins, Cilia, Cyclin-Dependent Kinases, Humans, Signal Transduction