Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The formation of low-order oligomers of β-amyloid (Aβ) within the brain is widely believed to be a central component of Alzheimer's disease (AD) pathogenesis. However, despite advances in high-throughput and high-resolution techniques such as xMAP and mass spectrometry (MS), investigations into these oligomeric species have remained reliant on low-resolution Western blots and enzyme-linked immunosorbent assays. The current investigation compared Aβ profiles within human cortical tissue using sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis (PAGE), xMAP and surface enhanced laser desorption/ionization time-of-flight MS and found that whilst there was significant correlation across the techniques regarding levels of monomeric Aβ, only SDS-PAGE was capable of detecting dimeric isoforms of Aβ. The addition of synthetic di-tyrosine cross-linked Aβ(1-40)Met(35)(O) to the AD tissue demonstrated that the MS methodology was capable of observing dimeric Aβ at femto-molar concentrations, with no noticeable effect on monomeric Aβ levels. Focus turned to the association between SDS-PAGE and levels of observable dimeric Aβ within the AD brain tissue. These investigations revealed that increased levels of dimeric Aβ were observed with increasing concentrations of SDS in the sample buffer. This finding was subsequently confirmed using synthetic Aβ(1-42) and suggests that SDS was inducing the formation of dimeric Aβ. The findings that SDS promotes Aβ dimerization have significant implications for the putative role of low-order oligomers in AD pathogenesis and draw into question the utility of oligomeric Aβ as a therapeutic target.

Original publication




Journal article


Acta Neuropathol

Publication Date





549 - 564


Alzheimer Disease, Amyloid beta-Peptides, Artifacts, Brain, Dimerization, Electrophoresis, Polyacrylamide Gel, Humans