Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Excitotoxicity is the pathological process by which neuronal death occurs as a result of excessive stimulation of receptors at the excitatory synapse such as the NMDA receptor (NMDAR). Excitotoxicity has been implicated in the acute neurological damage from ischemia and traumatic brain injury and in the chronic neurodegeneration in Alzheimer's disease (AD) and Huntington's disease (HD). As a result NMDAR antagonists have become an attractive therapeutic strategy for the potential treatment of multiple neurodegenerative diseases. However NMDAR signaling is dichotomous in nature, with excessive increases in neuronal intracellular calcium through excessive NMDAR activity being lethal but moderate increases to intracellular calcium levels during normal synaptic function providing neuroprotection. Subsequently indiscriminant inhibition of this receptor is best avoided as was concluded from previous clinical trials of NMDAR antagonists. We show that the metal chaperone, PBT2, currently in clinical trials for HD, is able to protect against glutamate-induced excitotoxicity mediated through NMDARs. This was achieved by PBT2 inducing Zn(2+)-dependent increases in intracellular Ca(2+) levels resulting in preconditioning of neurons and inhibition of Ca(2+)-induced neurotoxic signaling cascade involving calpain-activated cleavage of calcineurin. Our study demonstrates that modulating intracellular Ca(2+) levels by a zinc ionophore is a valid therapeutic strategy to protect against the effects of excitotoxicity thought to underlie both acute and chronic neurodegenerative diseases.

Original publication




Journal article


Neurobiol Dis

Publication Date





176 - 185


Alzheimer's disease (AD), Calcium flux, Excitotoxicity, Huntington's disease (HD), Zinc, Animals, Animals, Newborn, Calcineurin, Cerebral Cortex, Clioquinol, Dizocilpine Maleate, Dose-Response Relationship, Drug, Drug Administration Schedule, Drug Interactions, Embryo, Mammalian, Excitatory Amino Acid Agonists, Excitatory Amino Acid Antagonists, Glutamic Acid, Glycogen Synthase Kinase 3, Memantine, Metals, Mice, Mice, Inbred C57BL, Neurons, Time Factors