Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Protein homoeostasis is a fundamental requirement for all living cells in order to survive in a dynamic surrounding. Proper levels of AIRAPL (arsenite-inducible RNA-associated protein-like protein) (ZFAND2B) are required in order to maintain cellular folding capacity in metazoans, and functional impairment of AIRAPL results in acceleration of aging and protein aggregation. However, the cellular roles of AIRAPL in this process are not known. In the present paper, we report that AIRAPL binds and forms a complex with p97 [VCP (valosin-containing protein)/Cdc48], Ubxd8 (ubiquitin regulatory X domain 8), Npl4-Ufd1, Derlin-1 and Bag6 on the ER (endoplasmic reticulum) membrane. In spite of the fact that AIRAPL complex partners are involved in the ERAD (ER-associated degradation) process, AIRAPL knockdown does not show any impairment in ERAD substrate degradation. However, translocation into the ER of a subset of ERAD- and non-ERAD-secreted proteins are regulated by AIRAPL. The ability to regulate translocation by the p97-AIRAPL complex is entirely dependent on the proteins' signal peptide. Our results demonstrate a p97 complex regulating translocation into the ER in a signal-peptide-dependent manner.

Original publication

DOI

10.1042/BJ20130710

Type

Journal article

Journal

Biochem J

Publication Date

15/01/2014

Volume

457

Pages

253 - 261

Keywords

Adaptor Proteins, Signal Transducing, Adenosine Triphosphatases, Animals, Carrier Proteins, Cell Cycle Proteins, Cell Membrane, Endoplasmic Reticulum, Humans, Mice, Protein Binding, Protein Sorting Signals, Protein Transport, RNA-Binding Proteins, Valosin Containing Protein, Zinc Fingers