Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Isopenicillin N synthase (IPNS) catalyses formation of bicyclic isopenicillin N, precursor to all penicillin and cephalosporin antibiotics, from the linear tripeptide delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine. IPNS is a non-haem iron(II)-dependent enzyme which utilises the full oxidising potential of molecular oxygen in catalysing the bicyclisation reaction. The reaction mechanism is believed to involve initial formation of the beta-lactam ring (via a thioaldehyde intermediate) to give an iron(IV)-oxo species, which then mediates closure of the 5-membered thiazolidine ring. RESULTS: Here we report experiments employing time-resolved crystallography to observe turnover of an isosteric substrate analogue designed to intercept the catalytic pathway at an early stage. Reaction in the crystalline enzyme-substrate complex was initiated by the application of high-pressure oxygen, and subsequent flash freezing allowed an oxygenated product to be trapped, bound at the iron centre. A mechanism for formation of the observed thiocarboxylate product is proposed. CONCLUSIONS: In the absence of its natural reaction partner (the N-H proton of the L-cysteinyl-D-valine amide bond), the proposed hydroperoxide intermediate appears to attack the putative thioaldehyde species directly. These results shed light on the events preceding beta-lactam closure in the IPNS reaction cycle, and enhance our understanding of the mechanism for reaction of the enzyme with its natural substrate.

Original publication




Journal article


Chem Biol

Publication Date





1231 - 1237


Crystallography, X-Ray, Oxidation-Reduction, Oxidoreductases, Structure-Activity Relationship, Substrate Specificity