Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The zinc-finger protein tristetraprolin (TTP) binds to AU-rich elements present in the 3' untranslated regions of transcripts that mainly encode proteins of the inflammatory response. TTP-bound mRNAs are targeted for destruction via recruitment of the eight-subunit deadenylase complex "carbon catabolite repressor protein 4 (CCR4)-negative on TATA-less (NOT)," which catalyzes the removal of mRNA poly-(A) tails, the first obligatory step in mRNA decay. Here we show that a novel interaction between TTP and the CCR4-NOT subunit, CNOT9, is required for recruitment of the deadenylase complex. In addition to CNOT1, CNOT9 is now included in the identified CCR4-NOT subunits shown to interact with TTP. We find that both the N- and C-terminal domains of TTP are involved in an interaction with CNOT9. Through a combination of SPOT peptide array, site-directed mutagenesis, and bio-layer interferometry, we identified several conserved tryptophan residues in TTP that serve as major sites of interaction with two tryptophan-binding pockets of CNOT9, previously found to interact with another modulator GW182. We further demonstrate that these interactions are also required for recruitment of the CCR4-NOT complex and TTP-directed decay of an mRNA containing an AU-rich element in its 3'-untranslated region. Together the results reveal new molecular details for the TTP-CNOT interaction that shape an emerging mechanism whereby TTP targets inflammatory mRNAs for deadenylation and decay.

Original publication

DOI

10.1016/j.jmb.2017.12.018

Type

Journal article

Journal

J Mol Biol

Publication Date

02/03/2018

Volume

430

Pages

722 - 736

Keywords

AU-rich elements, deadenylation, inflammatory, mRNA, post-translational control, 3' Untranslated Regions, Autoantigens, Exoribonucleases, HeLa Cells, Humans, Mutagenesis, Site-Directed, Protein Interaction Domains and Motifs, RNA Stability, RNA, Messenger, RNA-Binding Proteins, Receptors, CCR4, Transcription Factors, Tristetraprolin, Tryptophan